Archive for April, 2010

数学研究在古代只是在少数地方,由少数学者所从事的活动,到了17、18世纪,由于数学教育的发展,数学知识的传播,数学迅速地在英国、法国、德国、意大利、俄国等国发展起来.其中最突出的有一个是法国数学学派,他们中的大多数来自巴黎理工科大学,另一个是以哥廷根大学为中心的德国数学学派.发展成为一个广阔的分析领域,并得到广泛的应用.接着活跃在数学界的是法国的”三L”,即拉格朗日、拉普拉斯和勒让德.拉格朗日在方程论方面丰富了代数学的内容,在数论、连分数、微积分、微分方程、变分法等方面都写了大量的论文.傅立叶和柏松是19世纪初叶的法国两颗数学明星,他们都从事应用数学的研究,并且在巴黎高等理工科大学任教.1822年,傅立叶发表了著名的《热的解析理论》,这是数学理论应用于物理的典范,它开辟了近代数学的一个巨大分支——傅立叶级数、傅立叶积分、傅立叶变换,这些统称为傅立叶分析.在数学分析的发展史上,极限理论的建立具有划时代的意义,这一工作是由大数学家柯西、外尔斯特拉斯等人完成的.柯西出生于巴黎,1805年入巴黎高等理工科大学,并获得拉格朗日和拉普拉斯的赏识.柯西兴趣广泛,他的数学专著、讲义和论文据统计超过七百种,有26卷之多,在数量上仅次于欧拉.柯西是数学分析方面集大成的人物,数学分析方面主要著作有三本:《分析教程》、《无穷小计算概要》和《微分学讲义》.这几部著作具有划时代的价值,给出分析学一系列基本概念的严格定义,奠定了以极限论为基础的现代数学分析体系. (more…)

Advertisements

Read Full Post »